The National Covid Cohort Collaborative Interoperability Standards Priorities Task Force Meeting - April 16, 2021 Christopher Chute & Melissa Haendel

A program of NIH's National Center for Advancing Translational Sciences

NATIONAL CENTER FOR DATA TO HEALTH

A program of NIH's National Center for Advancing Translational Sciences

A program of NIH's National Center for Advancing Translational Sciences

N3C Dashboard covid.cd2h.org/dashboard

<u> **Sites:**</u> 50

Persons: 5.0 million
+ COVID+ Cases: 1,222,296

Total Number of Rows: 5.8 billion

Clinical Observations: 721.4 million

Cab Results: 2.6 billion

Medication Records: 949.0 million

E Procedures: 287.3 million

iii Visits: 257.8 million

50 sites with data released (purple) and **37 sites** with data pending (pink). OCHIN is a national network of **131 sites** (blue).

covid.cd2h.org/team

s 29 Domain teams!

Engagement and Registration Statistics

N3C Data Ingestion & Harmonization Pipeline

A program of NIH's National Center for Advancing Translational Sciences

Span manual curation of mapping resources to industrial scale production transformation

Federated versus Centralized DQ

Many clinical data research networks are *federated*; N3C is *centralized*. Centralized datasets have some advantages where data quality assessment is concerned.

<u>Ouestions are</u> Results are to network Partners Reduced y 3 days by 1 day

Federated Network

Centralized Data

for Advancing Translational Sciences

Each of the 50+ sites has a pipeline with 100+ transformations

NATIONAL CENTER

FOR DATA TO HEALTH

The provenance between 5000 transformations across the 50 sites is automatically tracked.

This enables:

- pipeline developers to very quickly identify the root cause of data quality issues
- data pipelines can be refreshed in <20 minutes whenever the source data updates

for Advancing Translational Sciences

Each site has its own set of data health checks that run each time new data is submitted

NATIONAL CENTER FOR DATA TO HEALTH

- When the CDM mapping pipeline is deployed for a new site, it comes with a set of automated data health checks.
- These run every time the data updates so that if new data doesn't meet expectations, the pipeline administrators are immediately alerted and can take action

Unit harmonization example

NATIONAL CENTER FOR DATA TO HEALTH

Mapping is all over the place, and lossy

Mapping is problematic for computational use

- Proliferation of mappings
 - Too many combinations
 - Frequently conflicting
 - Frequently stale
- Semantics unclear
 - Equivalent?
 - Exact?
 - Broad/Narrow/Related?
 - Without precise equivalence mapping, merging is not possible
 - No curation rules or provenance provided

(*N*²)-*N* sets of mappings (if each source provides their own mappings to all)

Potentially Lossy Mapping along the N3C Pipeline

A program of NIH's National Center for Advancing Translational Sciences

A program of NIH's National Center for Advancing Translational Sciences

What N3C has revealed most in terms of needs:

- Interoperability we need syntactic and semantic!
 - FHIR \Rightarrow OMOP (syntactic)
 - Common vocabulary/codeset mapping provenance and management (semantic)
- Approach data harmonization from an end-to-end data life cycle perspective
- Leverage USCDI, but build for interoperable semantic modeling and extensions

